A short-term water demand forecasting model using multivariate long short-term memory with meteorological data
نویسندگان
چکیده
Abstract Sustainable management of water resources is a key challenge nowadays and in the future. Water distribution systems have to ensure fresh for all users an increasing demand scenario related long-term effects due climate change. In this context, reliable short-term forecasting model crucial optimal resources. This study proposes novel deep learning based on long memory (LSTM) neural networks forecast hourly demand. Due limitations using multiple input sequences with different time lengths LSTM, proposed developed two modules that process temporal data: first module aimed at dealing meteorological information second representing longer-term The dual-module structure allows multivariate selection inputs length. performance compared conventional multi-layer perceptron (MLP) seasonal integrated moving average (SARIMA) real case study. results highlight potential approach prediction, outperforming more approaches.
منابع مشابه
A short-term, pattern-based model for water-demand forecasting
Stefano Alvisi (corresponding author) Marco Franchini Dipartimento di Ingegneria, Università degli Studi di Ferrara, Ferrara 44100, Italy Tel.: +39 0532 97 4930 Fax: +39 0532 97 4870 E-mail: [email protected] Alberto Marinelli DISTART, Università degli Studi di Bologna, Bologna 40136, Italy The short-term, demand-forecasting model described in this paper forms the third constituent part of t...
متن کاملShort-term and Medium-term Gas Demand Load Forecasting by Neural Networks
The ability of Artificial Neural Network (ANN) for estimating the natural gas demand load for the next day and month of the populated cities has shown to be a real concern. As the most applicable network, the ANN with multi-layer back propagation perceptrons is used to approximate functions. Throughout the current work, the daily effective temperature is determined, and then the weather data w...
متن کاملLong-Term Water Demand Forecasting
This chapter reviews existing long term water demand forecasting methodologies. Based on an extensive literature review, it shows that the domain has benefited from contributions by economists, engineers and system modelers, producing a wide range of tools, many of which have been tested and adopted by practitioners. It illustrates, via three detailed case studies in the USA, the UK and Austral...
متن کاملthe effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus
از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...
15 صفحه اولShort Term Local Meteorological Forecasting Using Type-2 Fuzzy Systems
Meteorological forecasting is an important issue in research. Typically, the forecasting is performed at “global level,” by gathering data in a large geographical region and by studying their evolution, thus foreseeing the meteorological situation in a certain place. In this paper a “local level” approach, based on time series forecasting using Type-2 Fuzzy Systems, is proposed. In particular t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Hydroinformatics
سال: 2022
ISSN: ['1465-1734', '1464-7141']
DOI: https://doi.org/10.2166/hydro.2022.055